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Orbital characters determined from Fermi surface intensity patterns using angle-resolved
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In order to determine the orbital characters on the various Fermi surface pockets of the Fe-based
superconductors Ba0.6K0.4Fe2As2 and FeSe0.45Te0.55, we introduce a method to calculate photoemission matrix
elements. We compare our simulations to experimental data obtained with various experimental configurations
of beam orientation and light polarization. We show that the photoemission intensity patterns revealed from
angle-resolved photoemission spectroscopy measurements of Fermi surface mappings and energy-momentum
plots along high-symmetry lines exhibit asymmetries carrying precious information on the nature of the states
probed, information that is destroyed after the data symmetrization process often performed in the analysis of
angle-resolved photoemission spectroscopy data. Our simulations are consistent with Fermi surfaces originating
mainly from the dxy , dxz, and dyz orbitals in these materials.
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I. INTRODUCTION

The spectral intensity measured by various experimental
tools is modulated by matrix elements sensitive to the nature
of the states probed, as well as to the experimental setup.
For particular configurations, symmetry imposes that some
matrix elements vanish or reach maxima. Taking advantage of
such selection rules, one can extract precious information on
the probed states. For example, numerous textbooks describe
how to use Raman and infrared selection rules to reveal the
symmetry of phonons and other excitations. As with other
probes, symmetry plays an important role in the photoemission
process. It has been used often in the past to identify the nature
of the electronic states of various systems.1–7

Unfortunately, simple photoemission selection rules are
restricted to a few configurations, which are not necessarily
accessible with every experimental setup. Moreover, a slight
sample misalignment may cause a misinterpretation of the
data. In fact, the intensity variations in the momentum space
often look strange and asymmetric, and they are usually
neglected by ARPES experimentalists, who refer to them as
the nebulous matrix element effects. In some cases, Fermi
surface mappings are symmetrized to make them look more
“natural.” Despite several attempts reported previously to
reproduce experimental data,7–10 the determination of the
orbital characters in ARPES experiments is still not performed
routinely, mainly due to the complexity of the calculations. A
simpler and more practical approach is needed to extract useful
information that is otherwise commonly sacrificed.

In this paper, we develop a systematic but simple approach
to the calculation of photoemission matrix elements in Fermi
surface mappings. We apply this technique to optimally doped
Ba0.6K0.4Fe2As2, a multiband Fe-based superconductor for
which plenty of data are available in the literature,11 and to
FeTe0.55S0.45, an Fe-chalcogenide superconductor. A precise
knowledge of the determination of the orbital characters of the

low-energy bands is particularly crucial in these materials,
for which superconducting pairing mechanisms involving
orbital fluctuations have been proposed.12 Our calculations
show remarkable agreement with experimental data in mul-
tiple experimental configurations of polarization and beam
orientation.

II. EXPERIMENT

In order to test our numerical approach, we performed
ARPES experiments on high-quality single crystals of
Ba0.6K0.4Fe2As2 and FeTe0.55Se0.45 under various conditions.
For each experimental setup, samples have been cleaved in
situ and maintained in ultrahigh-vacuum conditions. ARPES
Fermi surface mappings were performed at the Institute of
Physics, Chinese Academy of Sciences, in a weakly polarized
π configuration using an MBS T1 microwave-driven helium
source (hν = 21.2 eV) and a VG-Scienta R4000 electron
analyzer. Synchrotron-based experiments were also performed
at Swiss Light Source beamline SIS and at the 1-cubed ARPES
end-station of BESSY using a VG-Scienta R4000 electron
analyzer mounted in p and s configurations, respectively.
For these experiments, photons in the 20–138 eV range
with different circular and linear polarizations were used. All
measurements have been performed below 20 K.

III. DEFINITIONS AND CONVENTIONAL
SELECTION RULES

Photoemission is a complex quantum problem which is
far from easy to handle. For a simpler description, it is very
convenient to decompose this process into the three steps
of the so-called 3-step model:13 (i) excitation of an electron
of initial state | i〉 into a bulk final state; (ii) travel of the
excited electron towards the surface; (iii) transmission of the
excited electron through the surface into a final state | f 〉
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FIG. 1. (Color online) (a) Definitions of the p and s ARPES
configurations, along with the various angles used in the calculations.
(b) and (c) illustrate, respectively, the even and odd combination of
the dxz and dyz orbitals, along with the definition of the θFS angle.

approximated by a plane wave. During the whole process, the
relaxation of the remaining electrons and their interactions
with the photoelectron are neglected. Within the 3-step model,
the matrix element characterizing the photoemission process
is given by

Mif = 〈f | A · r | i〉, (1)

where A is the potential vector associated with the incoming
photon and r is the position operator. For the sake of clarity,
we also disregarded a constant prefactor.

We present in Fig. 1(a) two commonly used ARPES con-
figurations that simplify the analysis significantly. We call Aπ

and Aσ , respectively, the components of the potential vector
parallel (π polarization) and perpendicular (σ polarization)
to the emission plane defined by the vector k along which
the photoemitted electron is ejected and the normal to the
sample surface. Similarly, the incident plane is defined by the
incident light vector and the normal to the sample surface.
When dealing with unpolarized light, it is also useful to define
two special configurations of the ARPES setup. Hereafter,
we call p and s the ARPES configurations for which the
incident and emission planes are parallel and perpendicular,
respectively. With θl described as in Fig. 1(a), the potential
vector can be expressed in a more general configuration with
linear polarized light as

A = (Ax,Ay,Az) = (−Aπ cos θl,Aσ ,Aπ sin θl). (2)

Right-handed circular polarization C+ and left-handed
circular polarization C− are defined by A(C±) = Aπ ± iAσ ,
and thus for circular polarized light we have

A(C±) = (−Aπ cos θl, ± iAσ ,Aπ sin θl). (3)

Nonpolarized light is treated by adding separately the con-
tributions of π and σ linearly polarized photons to the
photoemission intensity | Mif |2.

Since | Mif |2 is a scalar observable, it must necessarily
transform under crystal symmetry operations like the fully
symmetric irreducible representation �1 of the corresponding
group in order to be different from zero. In other words, the
decomposition of the tensor product of �i , �f , and �op, which
are the representations associated with | i〉, | f 〉, and A · r,
respectively, must contain �1, which is possible only if their
total parity is even. The plane wave 〈r | f 〉 = eik·r is always an
even state with respect to the emission plane. With respect to
that same plane, the operator A · r has an even and an odd parity
for light polarization parallel (Aπ ) and perpendicular (Aσ ) to
the emission plane, respectively. Knowing the parity of both
A · r and the final state from the experimental configuration,
one can deduce the parity of the initial state by choosing
a proper set of coordinates. For a tetragonal system with d

electrons like the Fe-based superconductors, the most natural
orientations for ARPES experiments is to align the sample (i)
with the Fe-Fe bonds parallel to the emission plane to probe the
electronic states along the �-M direction (here defined in the
1 Fe/unit cell representation), or (ii) with the Fe-Fe bonds at
45◦ from the emission plane for ARPES measurements along
the �-X direction. In these simple cases, the five orbital wave
functions dz2 , dxz, dyz, dxy , and dx2−y2 form a convenient basis
to describe the initial state. It is often preferable though to
use linear combinations of dxz and dyz to construct the wave
functions do and de, which are odd and even with respect
to any emission plane, respectively, as shown in Figs. 1(b)
and 1(c). More specifically, we have

de = dxz cos θFS + dyz sin θFS, (4)

do = −dxz sin θFS + dyz cos θFS, (5)

where θFS is the Fermi surface angle defined in Figs. 1(b) and
1(c). Although such approach has been used already to study
the Fe-based superconductors,14–19 the various interpretations
are not always consistent, thus calling for alternative methods
for determining the orbital characters.

IV. COMPUTATIONAL DETAILS

In this section, we explain briefly how to use ARPES
intensity patterns to determine the orbital characters of the
Fe 3d electronic states near the Fermi level of Fe-based
superconductors. A more detailed calculation is given in the
Appendix. Here we focus only on the main steps.

Within the 3-step model, as mentioned previously, we use
the 3d atomic orbital wave functions {dxy,dxz,dyz,dz,dx2−y2}
to characterize the initial state | i〉:

〈r | i〉 = R32(r)
2∑

m=−2

αmYm
2 (θ,φ), (6)
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where αm are coefficients, R32(r) ∝ r2e−r/3 is the longitudinal
part of the 3d atomic wave functions with r given in Bohr
radius units, and Ym

l (θ,φ) is the spherical harmonic with
angular moment l and azimuthal moment m. The final state,
here approximated by a plane wave function, can be expressed
in terms of the spherical harmonics as

〈r | f 〉 = eikf ·r

= 4π

∞∑
l=0

iljl(kf r)
l∑

m=−l

Y m∗
l (θk,φk)Ym

l (θ,φ), (7)

where jl(kf r) is the Bessel function. The photoemission matrix
element Mλ

if associated with the different spherical harmonic
Yλ

2 becomes

Mλ
if ∝ 〈f | A · r | i; m = λ〉 = (

Axϒ
λ
x + Ayϒ

λ
y + Azϒ

λ
z

)
,

(8)

where

ϒm=λ
α=x,y,z =

∞∑
l=0

ilρl(kf )
l∑

μ=−l

Y
μ

l (θk,φk)f λ
α (l,μ), (9)

ρl(kf ) = 4π

∫
drr3R32(r)jl(kf r), (10)

f λ
α (l,μ) =

∮
dθdφ sin θY

μ∗
l (θ,φ)pαY λ

2 (θ,φ), (11)

px = x/r =
√

1

2

(
Y−1

1 − Y 1
1

)
,

py = y/r = i

√
1

2

(
Y−1

1 + Y 1
1

)
, (12)

pz = z/r = Y 0
1 .

The passage from these matrix elements to matrix elements
involving the 3d orbital atomic wave functions is performed
using the following relations:

M
dz2

if = M0
if ,

M
dyz

if = i

√
1

2

(
M−1

if + M1
if

)
,

M
dxz

if =
√

1

2

(
M−1

if − M1
if

)
, (13)

M
dxy

if = i

√
1

2

(
M−2

if − M2
if

)
,

M
dx2−y2

if =
√

1

2

(
M−2

if + M2
if

)
.

In Figs. 2(a)–2(e), we give the φ dependence of the x, y, and
z components of these matrix elements for a photon energy of
21.2 eV, which corresponds to the Iα line of conventional He
discharge lamps, and for kf || = 0.3π/a, where a is the in-plane
lattice parameter. We used the fact that the standard Gaunt
coefficients f λ

α (l,μ) are nonvanishing only for l = 1,3. In
addition, we found empirically that the coefficients ρ3(kf ) = 1
and ρ1(kf ) = −2/5 reproduce the experimental data very well
over a wide range of photon energy. For a better comparison,
all the matrix element weights are normalized by z − M(de).
We note that matrix elements for the purely in-plane orbitals

FIG. 2. (Color online) (a)–(e) Angular dependence of the x (in
red), y (in green), and z (in blue) components of the photoemission
matrix elements related to the various 3d orbitals (see the text). (f)–(j)
Same as (a)–(e) but using the simplified matrix elements (see the text).
We used hν = 21.2 eV and kF = 0.3π .

dxy and dx2−y2 are smaller than the other ones by a factor of
5, even though dxy , dxz, and dyz are equivalent orbitals under
symmetry operations. This effect is caused by the smallness
of the angle θk when using a photoenergy in this range. We
also point out that the z component of the dz2 matrix element
is larger than any other, which indicates that the dz2 matrix
element is more sensitive than others to a Az polarization.

Due to the fact that kz is not a good quantum number
in photoemission experiments, we introduce a few empirical
parameters to the formula describing the full matrix element
Mδ

if and improve the agreement between simulations and
experimental data. The full matrix element is now expressed as

Mδ
if = (

AxM
δ
x + AyM

δ
y + AzM

δ
z ∗ wz ∗ eiγδ

)
wδ, (14)

where δ = dz2 ,dxz,dyz,dxy,dx2−y2 . From direct comparison
with experiments, we found out that the ratio between the
matrix elements associated with the dxy and dyz orbitals
is only 1/2 instead of 1/5. We thus introduced the weight
factor wδ = {5(δ = dxy,dx2−y2 ),1 otherwise}. Within our
semiquantitative approach, these parameters are viewed
as phenomenological parameters compensating for our
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simplified model. They have been fixed at the same values for
all our simulations. For the study of Fe-based superconductors,
wz and γ have been fixed to 4 and kzc + 3π

2 , respectively,
where c is the lattice parameter along the z direction.

Since ARPES allows only measurement of the intensity
I δ
if (φk) = |Mδ

if |2, and more precisely the relative distribution
of intensity in the momentum space, several prefactors can be
dropped in the calculations, including the imaginary prefactor.
Assuming small θk in Eq. (9), we can simplify the matrix
elements as follows, keeping only the angular parts of the
matrix element components:

M(dz2 ) = (− cos φk, − sin φk, − 1),

M(dxz) = (1,0, − cos φk),

M(dyz) = (0,1, − sin φk),

M(dxy) = (sin φk, cos φk, − sin 2φk),

M(dx2−y2 ) = (cos φk, − sin φk, − cos 2φk),

M(de) = M(dxz) cos θFS + M(dyz) sin θFS,

M(do) = −M(dxz) sin θFS + M(dyz) cos θFS.

The different components of these simplified matrix ele-
ments are given in Figs. 2(f)–2(j). Although their precise ab-
solute values differ from those of the components in Figs. 2(a)–
2(e), they carry essentially the same orbital information while
simplifying calculations significantly.

We now consider the effect of light polarization on
the photoemission response, which is widely known by
experimentalists to be important. We first start by the ex-
perimental observation of a difference, often called circu-
lar dichroism, between the photoemission response to left-
handed and right-handed circular polarizations. This effect can
have different origins.20 For example, it has been attributed
to spontaneous breaking of the time-reversal symmetry in
Bi2Sr2CaCu2O8+δ .21 This effect is quite different from the
circular polarization used in YBa2Cu3O7−δ , for which circular
dichroism appears as a surface anomaly. It has been useful to
separate the photoemission contributions of the bulk and of
the highly polar surface resulting from the absence of a natural
cleaving plane in this material.22–24 In this particular case,
only a nontrivial combination of the photoemission responses
to left-handed and right-handed circular polarized light can
allow a full separation of these two components.25

We note that besides these anomalous circular dichroism
effects, one should also expect asymmetric photoemission
response to C+ and C− light, depending on the geometry
of the ARPES configuration. Indeed, it has been shown that
unless the photoemitted momentum, the normal to the sample
surface, and the incident beam momentum are all coplanar
(p ARPES configuration) in a mirror symmetry plane of
the sample, circular dichroism can be observed.20 Rather
than searching for an origin for circular dichroism in the
Fe-based superconductors, which goes beyond the purpose
of the current work, i.e., to extract useful information on the
orbital characters of the bands and FSs observed by ARPES,
here we simply try to describe its phenomenology and to add
it as a tool to determine the orbital characters of bands.

By working out the details of Eq. (13), one can show

that all the matrix elements M
δ=d

z2 ,dxz,dyz,dxy ,dx2−y2

α=x,y,z have pure

imaginary values. Assuming the form of the potential vector
given in Eq. (3) for circular polarization, we deduce that the
photoemission intensity for C± polarized light is given by

I δ
C± ∝ ∣∣Mδ

C±

∣∣2

∝ ∣∣Aπ

( − cos θlM
δ
x + sin θlM

δ
z

) ± iAσMδ
y

∣∣2

= A2
π

∣∣ − cos θlM
δ
x + sin θlM

δ
z

∣∣2 + A2
σ

∣∣Mδ
y

∣∣2
. (15)

The previous equation indicates that there should be no
difference between the photoemission responses to C+ and C−
polarized light if all the matrix elements have pure imaginary
values, which is supposed from Eq. (13). To account for the
difference occurring in real experimental data, we add a phase
to each matrix element. The photoemission intensity when
circular polarized light is used thus becomes

I δ
C± ∝ ∣∣Aπ

( − cos θlM
δ
xe

iγx + sin θlM
δ
z e

iγz
) ± iAσMδ

ye
iγy

∣∣2
.

(16)

The addition of phase factors to each matrix element also
influences the photoemission intensity Iπ corresponding to π -
polarized light and the photoemission intensity Iσ associated
with σ -polarized light, which are now respectively expressed
as

I δ
π ∝ ∣∣Aπ

( − cos θlM
δ
xe

iγx + sin θlM
δ
z e

iγz
)∣∣2

(17)

and

I δ
σ ∝ ∣∣AσMδ

ye
iγy

∣∣2
. (18)

These later considerations allow us to predict appropriate
phenomenological forms for the photoemission intensity
responses to circular and unpolarized light in the common
p and s ARPES configurations. As illustrated in Fig. 1(a), the
photoemitted electrons in the p-type ARPES configuration are
collected in the kx-kz plane. For odd symmetry orbital charac-
ters, we then have Mδ=odd

x = 0, Mδ=odd
z = 0, but Mδ=odd

y �= 0,
while for even symmetry we get Mδ=even

x �= 0, Mδ=even
z �= 0,

but Mδ=even
y = 0. As a consequence,

I δ=odd
C± (π ) ∝ ∣∣ ± iAσMδ

ye
iγy

∣∣2
,

I δ=even
C± (π ) ∝ ∣∣Aπ

( − cos θlM
δ
xe

iγx + sin θlM
δ
z e

iγz
)∣∣2

.

From these later equations, we can conclude that in the p

configuration, there is no difference between C+ and C− along
the high symmetry line cut, a result valid for both odd and
even orbital characters and consistent with a previous work.20

This contrasts with the intensity predicted for a nonpolarized
light excitation. Since the photoemission intensity Inon for a
nonpolarized light excitation can be described by the sum of
Iπ and Iσ , we have

I δ=odd
non (π ) ∝ ∣∣AσMδ

ye
iγy

∣∣2
,

I δ=even
non (π ) ∝ ∣∣Aπ

( − cos θlM
δ
xe

iγx + sin θlM
δ
z e

iγz
)∣∣2

.

These equations indicate that in the p ARPES configuration,
even symmetry orbitals may lead to an intensity asymmetry
along kx , but not the odd symmetry ones.

In the s configuration, electrons are collected in the
ky-kz plane, and we should expect different selection rules.
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Indeed, we now have for the odd symmetry orbital char-
acters Mδ=odd

x �= 0, but Mδ=odd
z = 0 and Mδ=odd

y = 0. For
the even symmetries, the experimental configuration im-
poses Mδ=even

x = 0, but Mδ=even
z �= 0 and Mδ=even

y �= 0. Con-
sequently, the photoemission intensity response to circular
polarized light in the s configuration becomes

I δ=odd
C± (σ ) ∝ ∣∣Aπ

( − cos θlM
δ
xe

iγx
)∣∣2

,

I δ=even
C± (σ ) ∝ ∣∣Aπ

(
sin θlM

δ
z e

iγz
) ± iAσMδ

ye
iγy

∣∣2
.

In contrast to the p configuration, the equations show that
we can expect circular dichroism in the s configuration, in
agreement with a previous work focused on core levels.20 The
use of circular polarized light is also a useful way to determine
the symmetry of the band structure. As for the photoemission
response to nonpolarized light in the s ARPES configuration,
we now have

I δ=odd
non (σ ) ∝ ∣∣Aπ

( − cos θlM
δ
xe

iγx
)∣∣2

,

I δ=even
non (σ ) ∝ ∣∣Aπ

(
sin θlM

δ
z e

iγz
)|2 + ∣∣AσMδ

ye
iγy

∣∣2
.

Even though the comparison between the photoemission in-
tensity recorded with linear π -polarized and σ -polarized light
gives the strongest contrasts, some assumptions on the sym-
metry of bands can still be made based on data recorded with
nonpolarized light, such as a traditional He discharge lamp.

V. ORBITAL CHARACTERS IN Ba0.6K0.4Fe2As2

Following LDA band calculations indicating that the orbital
weight around the Fermi level in Ba0.6K0.4Fe2As2 is dominated
by the Fe 3d orbitals dxz, dyz, and dxy , we only considered the
related matrix elements in our simulations. More specifically,
LDA predicts that there are three holelike Fermi surfaces
centered at the � point with dxy , de, and do orbital characters.
Previous ARPES results also show the existence of 3 holelike
Fermi surface pockets centered at �, two of them being nearly
degenerate.6,26–28 Following a previous notation, here we call
β the outer Fermi surface, and α and α′ the two others,
which will be considered degenerate in our simulations. At
M = (π,0), here defined in the 1 Fe/unit cell description,
theoretical calculations predict a Fermi surface pattern formed
by the hybridization of 2 ellipses. For kz = 0, the ellipse
tips have a dxy orbital character while the inner part comes
from dyz and dxz.29,30 This orbital distribution around M is
reversed for kz = π . Theoretical calculations also predict a
nonnegligible kz variation at the M point29–31 that is not
observed by ARPES.28 While ARPES performed for several
Fe-based materials with different cleaving surfaces reveals kz

variations of the electronic band structure at the � point,11 the
reasons behind this experiment vs theory discrepancy for the
electronic band structure at the M point are still under intense
debate. In our simulations, we use as M-centered electronlike
Fermi surface pockets the kz-invariant hybridized functions
determined from a three-band model:32

(dxy/yz) = dyzt
′
3 · i sin θFS − dxy

(
t ′2 · cos2 θFS + ε0

xy

)
, (19)

(dxz/xy) = dxzt
′
3 · i cos θFS − dxy

(
t ′2 · sin2 θFS + ε0

xy

)
, (20)

where we imposed t ′3 = t ′2 = 1 and ε0
xy = 0.1 for convenience,

these parameters making the weight of different orbital char-

acters similar to random phase approximation (RPA) results.
As we show below, such functions are at least consistent with
the ARPES observations.

Figures 3(a)–3(d) show the Fermi surface intensity pat-
terns of Ba0.6K0.4Fe2As2 in various configurations. For each
experimental pattern, we give in the second column from the
left the corresponding result from our calculations using the
orbital configuration given above [Figs. 3(e)–3(h), simulation
A]. The size of each Fermi surface used in the calculations is
chosen to match approximately the size of the corresponding
experimental Fermi surface. We note that small variations
in the Fermi surface sizes do not have a qualitative effect
on the calculated patterns. In the first experimental config-
uration, light is σ polarized along the x-axis direction. The
experimental results indicate much stronger weight at the M
point than for the �-centered Fermi surfaces. The intensity is
even weaker for the β band, especially along the ky direction.
Since the polarization is parallel to kx , this result suggests
that the β band must have an odd symmetry along both kx

and ky , and we thus tentatively associate the β band with a
dxy orbital character, leaving do and de symmetries for the
nearly degenerate α and α′ bands. In this configuration, our
simulation shows a much stronger intensity at the M point
than for the �-centered Fermi surfaces, in agreement with
experimental data. Moreover, it predicts weaker intensity on
the outer �-centered Fermi surface, with even weaker spectral
intensity along the ky direction, which is also consistent with
the experiment.

To test our approach and our orbital attributions further,
we show in Fig. 3(b) results obtained at 21.2 eV (near kz =
028) with light π polarized along �-X (π/2,π/2). The Fermi
surface mapping is quite counterintuitive, with very strong
intensity spots found on the �-centered Fermi surface pockets
in the first quadrant. The result also indicates strong intensity
on the tip of the ellipse that has been measured. Surprisingly,
even such a peculiar Fermi surface pattern is qualitatively well
reproduced by our simulation displayed in Fig. 3(f), except
perhaps for a weaker intensity on the inner �-centered bands
than expected. This good agreement between simulation and
experiment reinforces our initial orbital assignment.

In Figs. 3(c) and 3(d), we present the Fermi surfaces
obtained with nonpolarized light from the Iα spectral line of a
helium discharge lamp (hν = 21.2 eV) for a beam incidence
aligned along the �-X and �-M directions, respectively.
Although both configurations give rise to much stronger
intensity along the M-centered Fermi surface elongated along
kx than the one elongated along ky , the Fermi surface patterns
are quite different around the Brillouin zone center. While the
map obtained with the �-X orientation of the light shows
spectral intensity almost suppressed in the third quadrant,
the intensity has a more symmetric distribution in the map
recorded in the �-M configuration, albeit for an intensity
slightly smaller below the kx = 0 line than above. Moreover,
the β Fermi surface exhibits an additional suppression of
intensity along kx and ky . Once more, our simulations,
displayed in Figs. 3(f) and 3(g), explain well the strange
spectral weight intensity distribution found experimentally.

In the third column from the left in Fig. 3, we illustrate
the sensitivity of our approach to distinguish between two sets
of simulations by displaying simulation results (simulation B)
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FIG. 3. (Color online) Fermi surface intensity patterns of Ba0.6K0.4Fe2As2. (a)–(d) Experimental results with different photon energies,
polarizations, and incident beam directions. (e)–(h) Corresponding simulated results using the simplified model described in the text (simulation
A: optimized orbital configuration). The inner �-centered α and α′ Fermi surface pockets with de and do orbital characters are considered
degenerate. The outer one (β band) is associated with the dxy orbital. The tip of the M-centered Fermi surface pockets has pure dxz or dyz orbital
characters while the inner part carries a dominant dxy orbital character. (i)–(l) Same as (e)–(h) but using a wrong orbital assignment (simulation
B). The orbital characters of the β and α′ bands have been exchanged compared to simulation A. The orbital characters of the tip and inner
part of the M-centered FS have also been exchanged. Red double arrows and blue arrows indicate the in-plane components of the orientation
of the light polarization and direction, respectively.

using a wrong orbital assignment. As compared to simulation
A, we exchanged the orbital characters of the α′ (do in
simulation A) and β (dxy in simulation A) bands. We also
switched the orbital characters around the M point, where
now the tip is considered to have a dxz/dyz character as
opposed to a dxy orbital character for the inner part. Although
the results seem also good when using σ -polarized light, the
agreement becomes much worse for other configurations. This
observation is valid not only for the β band, but also for
the Fermi surface intensity pattern at the M point, which
is mainly aligned along ky rather than kx , in contrast to the
experimental results and to simulation A. For these reasons,
we argue that the orbital configuration used in simulation A is
at least compatible with the experimental results, whereas the
one used in simulation B must be discarded.

Additional information can be obtained from the simula-
tions away from the Fermi level. In Fig. 4 we display the
ARPES intensity plots of Ba0.6K0.4Fe2As2 recorded along the
M-� direction using 138 eV photons. This photon energy
corresponds to kz = π , where the α and α′ bands have
the largest separation and thus their apparent degeneracy
is removed.28 As expected, the intensity pattern is strongly

polarization dependent. While the M-centered bands have
very high intensity for σ polarization as compared with the
�-centered bands, the opposite is observed for π polarization.
The spectrum obtained with circular polarization is more or
less a hybrid of the two others. Interestingly, the spectral weight
is strongly asymmetric with respect to the zone center when
using π polarization, whereas it is almost symmetric for the
spectrum recorded with σ polarization.

The dispersions and Fermi wave vectors of the various
bands can be approximated from the intensity plots as well
as from the corresponding curvature intensity plots,33 which
are given in the second row of Fig. 4. Using this information,
we performed simulations for energies away from the Fermi
level. The results are compared directly to the momentum
distribution curve (MDC) profiles in Fig. 4. To simplify,
we attributed the same half-width at half maximum to each
band. Despite this simplification, the simulations allow a
good understanding of the MDC profiles. For example, the
simulations predict the relative symmetry and asymmetry of
the photoemission intensity with respect to the zone center.
More importantly, they allow us to pin down the orbital
characters of the α and α′ bands. Symmetry imposes that the
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FIG. 4. (Color online) First row: ARPES intensity plots of Ba0.6K0.4Fe2As2 recorded along the M-� direction using 138 eV photons and (a)
σ , (b) π , and (c) circular right polarizations. Second row: Corresponding 1D curvature intensity plots (Ref. 33) along the momentum direction.
Third row: Corresponding MDC profile integrated within 10 meV below EF , compared to profiles simulated using the same half-width at half
maximum for each band. (j) Direct comparison of the MDC profiles recorded with σ (red) and π (blue) polarizations.

intensity of the de band vanishes when using σ polarization
along that particular direction. Accordingly, only two bands
are observed around � in this configuration. In contrast, both
the dxy and do bands should vanish around � when using π

polarization. Accordingly, only one band is detected around
� using π polarization. Since these bands have different
Fermi wave vectors, their orbital characters appear clearly after
superimposition of the MDC profiles of the spectra recorded

with the σ and π polarizations, as illustrated in Fig. 4(j). For
instance, we conclude that while the innermost band, the α

band, has a do symmetry, the α′ band corresponds to the even
combination of the dxz and dyz orbitals. Our simulations also
confirm that the β band carries a dominant dxy orbital character.

Even though the situation is a little more complicated
around the M point due the weaker photoemission intensity
with π -polarized light, our simulations reproduce qualitatively
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FIG. 5. (Color online) (a) and (b) give the ARPES intensity in the p configuration with C+ and C− polarizations, respectively. (c) MDC
profiles near EF corresponding to (a) and (b). (d) and (e) Simulated ARPES intensity in the p configuration with C+ and C− polarizations,
respectively. (f) MDC profiles near EF corresponding to (d) and (e). (g) and (h) show the ARPES intensity in the s configuration with C+
and C− polarizations, respectively. (i) MDC profiles near EF corresponding to (g) and (h). (j) and (k) Simulated ARPES intensity in the s

configuration with C+ and C− polarizations, respectively. (l) MDC profiles near EF corresponding to (j) and (k). To simplify the simulations,
we chose γ = π/4.

well the experimental MDC profiles given in Figs. 4(g), 4(h),
and 4(i), and suggest that the orbital character at the tip of
the electronlike Fermi surface pockets with ellipsoidal shape
is dxz (dyz). This conclusion differs from a previous ARPES
study on Co-doped BaFe2As2 that rather attributed dx2−y2 and
dz2 characters to the tip,19 which does not show up at the M
point in LDA band calculations.31,34,35 However, both ARPES
studies indicate that the shape and orbital characters of the
Fermi surfaces at the M point are preserved along kz, in contrast
to LDA band calculations.

We now investigate circular dichroism for the band structure
at the � point and demonstrate that it contains information
on the orbital characters of the different bands. Figures 5(a)
and 5(b) show the experimental data obtained in the p ARPES
configuration using C+ and C− incoming light, respectively.
As expected from the selection rules derived in the previous
section for this particular setup and in agreement with our
simulations displayed in Figs. 5(d) and 5(e), we do not observe

strong variations between the two sets of data. This is also
confirmed by the near-EF MDCs shown in Fig. 5(c) as
well as the simulated ones given in Fig. 5(f). Interestingly,
the experimental data only show strong intensity for the
degenerated inner band [α(odd symmetry) and/or α′(even
symmetry)], but not for the β(odd symmetry) band. This
behavior is captured by our simulations and confirms that the β

band has a odd symmetry orbital character. From our selection
rules, we deduce that mainly the α′ band is observed in this
configuration.

The situation becomes quite different for the data recorded
in the s configuration, once again using C+ and C− incoming
light. The corresponding experimental data are illustrated in
Figs. 5(g) and 5(h), respectively, and the MDC profiles near EF

are displayed in 5(i). When switching from C+ to C− polarized
light, the observed asymmetry in the intensity is qualitatively
reversed with respect to the � point. As expected from our
simulations given in Figs. 5(j) and 5(k), the largest switch in
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FIG. 6. (Color online) (a)–(c) Fermi surface intensity patterns of Ba0.6K0.4Fe2As2 recorded with 60 eV circular polarized light. The white
arrows show the direction of the incoming light. (d)–(f) Corresponding simulation results.

the intensity asymmetry is found on the inner band that has
an even symmetry orbital characters. Although observed, this
effect is less pronounced for the intensity of the β band.

Circular dichroism is also very well illustrated by the
Fermi surface intensity patterns recorded on Ba0.6K0.4Fe2As2

using 60 eV circular polarized light, which are displayed
in Figs. 6(a)–6(c). While the intensity on the right side is
much stronger when using C+ polarization, the situation is
reversed when using C− light. This effect is also reproduced
by our simulations given in Figs. 6(d)–6(f). Interestingly, a
comparison of Figs. 6(b) and 6(c) indicates that the pattern
rotates when the beam incidence rotates as well. It is worth
noting that with circular polarized light the minimum of
intensity occurs always on one side of the incoming beam
direction whereas it is observed away from the incoming beam
side when nonpolarized light is used, as suggested by Figs. 3(c)
and 3(d).

At this stage we would like to clarify how we determined
the phase γδ that appears in Eq. (14). Although we do not
understand its complete meaning, which goes beyond the
purpose of the current paper, we can intuitively relate this
phase to the discontinuity along kz at the surface of the sample.
To fix this parameter, we measured the electronic dispersion
along kz, as we now explain. Despite the 3D nature of the
crystal and electronic structures of materials measured in
ARPES, this technique is so to speak essentially a 2D probe
since the momentum perpendicular to the surface exposed
is not a good quantum number. However, within the nearly
free electron approximation for the final state,36 access to the
third dimension of momentum is often possible by varying the
energy of the incident photons. The momentum along the z

direction is then given by

kz =
√

2m

h̄2

√
(hν − � − EB) cos2 θ + V0, (21)

where θ is the angle between the emission direction and the
normal to the surface, m is the free electron mass, and V0 is
the inner potential, which is determined experimentally.

The photoemission intensity is expected to change with
photon energy due to the photoemission cross section37 and
can even show resonances at particular photon energies.
Photoemission measurements over a wide photon energy range
can indeed be used to determine the elemental characters
of the state probes.1,3,5,6 Experimentally, additional effects
that cannot find a simple explanation in the photoemission
cross section are observed. Figures 7(a)–7(e) show such an
interesting phenomenon: the energy-momentum photoemis-
sion intensity measured on Ba0.6K0.4Fe2As2 samples with C+
polarized light exhibits an asymmetry that varies with photon
energy. At 38 eV, the left part of the spectrum has a much
weaker intensity than the right part. This is no longer the
case at 46 eV, where the two sides show almost equivalent
intensity. The asymmetry is even reversed at 52 eV, with the
left side of the spectrum being much stronger than the right
side. The intensity on both becomes almost equal once more
at 60 eV before recovering the initial pattern at 66 eV. After
finding the kz correspondence of each photon energy using
V0 = 14.5 eV (similar to the value reported previously28), we
can plot the normalized intensity difference between the left
and right sides of the spectra as a function of kz. The results
are displayed in Fig. 7(f). Interestingly, the data can be fitted
by a cosine function with kzc + 3π/2 as argument, where
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FIG. 7. (Color online) (a)–(e) ARPES intensity plots of Ba0.6K0.4Fe2As2 recorded around the � point with C+ polarized light. (f) Normalized
intensity difference between the left and right sides of panels (a)–(e). The photon energy has been converted into kz using an inner potential
V0 = 14.5 eV.28 (g) Photoemission intensity plot of the electronic dispersion of Ba0.6K0.4Fe2As2 as a function of kz. The data have been recorded
between 30 and 90 eV using C+ light. (h)–(j) Simulations corresponding to the experimental conditions in (g). The phase γδ of Eq. (14) has
been fixed to kzc + δ.

c = 6.6 Å is the lattice parameter of the primitive unit cell,
which is equivalent to the distance between Fe layers.

This strange behavior of the photon energy dependence of
the intensity extends beyond the 38–66 eV range. Figure 7(g)
reveals oscillations in the 30–90 eV range, as kz goes up and
crosses different Brillouin zones. This range corresponds to kz

variations between 7π/c and 11π/c. The Z positions coincide
with kz values with the largest kF positions, i.e., kz = 7π/c,
9π/c, and 11π/c, whereas the � positions coincide with kz =
8π/c and 10π/c. For each Brillouin zone, the signal on the
left-hand side is quite strong as we increase kz from � to Z,
while the signal is much weaker on the right-hand side. The
situation is completely reversed with kz increasing from Z to

�, with the spectral intensity switched from one side to the
other. To obtain this effect in the simulations, the phase γδ has
to be fixed to kzc + 3π

2 over the whole range [see Fig. 7(i)].
A variation in the phase leads to simulated results completely
inconsistent with the experimental data and justifies our choice
of phase. However, a deeper knowledge of the details of the
photoemission process would be needed to provide an ab initio
value for this parameter.

VI. ORBITAL CHARACTERS IN FeTe0.55Se0.45

We now check our method to determine the orbital
characters in FeTe0.55Se0.45. Figures 8(a) and 8(b) show two
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FIG. 8. (Color online) Fermi surface and band structure of FeTe0.55Se0.45. (a)–(b) Fermi surface intensity plots recorded with unpolarized
photons (21.2 eV) directed along �-M and �-X, respectively. (c)–(d) Corresponding simulations for the do band, with the light momentum
indicated by the white arrows. (e) ARPES intensity cut recorded along the blue line in (a). (f) Simulations of the intensity cut in (e).

Fermi surface intensity patterns of FeTe0.55Se0.45 recorded
with a helium lamp in the p-type ARPES configuration. The
two measurements differ only by the orientation of the light
momentum, which is aligned along �-M and �-X for Figs. 8(a)
and 8(b), respectively. In both cases, the Fermi surface patterns
exhibit strong twofold symmetry, with stronger intensity along
the light momentum direction. According to our simulations,
only the do Fermi surface can follow this behavior. The
corresponding simulation results for the do Fermi surface
are given in Figs. 8(c) and 8(d), respectively. We note that
although small variations in the Fermi surface size do not
change qualitatively the simulations, obvious modifications
appear when the size is modified significantly. For example, the
large β Fermi surface in Ba0.6K0.4Fe2As2 displayed in Fig. 3(d)
carries the same dominant orbital character as the much smaller
β Fermi surface in FeTe0.55Se0.45 shown in Fig. 8(a), which
corresponds to similar experimental conditions. Yet, both
the experimental and theoretical results indicate differences.
Nevertheless, in both cases the Fermi surface patterns exhibit
a suppression of intensity along the x axis.

Figure 8(e) shows the ARPES intensity cut along �-M for
a light momentum aligned along the same direction [blue line
in Fig. 8(a)]. Two bands are clearly observed, one of them not
crossing or barely crossing the Fermi level. Actually, a fine
study indicates the presence of the expected third band, which
has a much weaker intensity and a kF only slightly larger than
that of the other band crossing the Fermi level.38 We display
the results of our simulations in Fig. 8(f) for a cut in the same
configuration, where we assume that the inner band carries a
de character while the weak outer one is dominated by dxy .
The main observation is that the de band exhibits a strong

asymmetry with respect to �. This is indeed what is observed
experimentally, reinforcing our assumption. We thus conclude
that the outer band has a dxy orbital character.

VII. DISCUSSION

Prior to discussing further the method presented in this
paper, we would like to comment on the results obtained for the
orbital characterization of the Fermi surface of FeTe0.55Se0.45

and Ba0.6K0.4Fe2As2. The summary of our orbital character
attributions for the various electronic bands in these materials
are displayed in Fig. 9. For convenience, we spaced the α

and α′ Fermi surfaces in Ba0.6K0.4Fe2As2, which are almost
degenerate in the kz = 0 plane. Except for absolute and relative
variations of the Fermi surface sizes at the � point, these
patterns hold for all kz values. We stress once more that
our experimental observation contrasts with the theoretical
expectation of a switch in the orbital distribution of the
M-centered Fermi surfaces at kz = π compared to kz = 0,29,30

which may have important consequences for interpocket
interactions.39

The superconducting gap of Ba0.6K0.4Fe2As2 is Fermi-
surface dependent.26,27,40 More precisely, it is about 12 meV
large for all Fermi surface sheets except for the 6 meV
gap found on the β band, which carries a dominant dxy

character. The 2�/kBTc ratio indicates a pairing in the
weak-coupling limit for the β band. Gaps in the weak-coupling
regimes are also observed for the β band in overdoped
Ba0.3K0.7Fe2As2

41 and underdoped Ba0.75K0.25Fe2As2.42 In-
terestingly, the 2.5 meV gap size on the β band in
FeTe0.55Se0.45 (Tc = 14.5 K) leads also to a similar ratio.38
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FIG. 9. (Color online) Schematic distribution of the orbital
characters in Ba0.6K0.4Fe2As2 and FeTe0.55Se0.45. Red: dxz; Blue: dyz;
Green: dxy .

From these observations, one could be tempted to argue that
superconducting pairing is controlled by the orbital character,
which for some reason could be less efficient for the dxy

orbital. However, this argument is in contradiction with the
observation of a dxy orbital character at the M point. In
reality, the two electronlike ellipses at the M point hybridize
and form two distinct Fermi surfaces.40 While the inner one
is largely dominated by a dxy character, the outer one is
formed by a combination of the dxz and dyz orbitals. Both of
them show a gap size indicating a strong-coupling regime.40

A recent study suggests similar results in FeTe0.55Se0.45.38

Therefore, we conclude that in the Fe-based superconductors
there is no direct correlation between the orbital character of
a Fermi surface and the gap size. Analyses of the gap size on
various Fermi surfaces using gap functions derived from local
antiferromagnetic exchange interactions rather suggest that the
relative size of the superconducting gap on a particular Fermi
surface is determined by its momentum position.28,38,43,44

The method described in this paper is certainly a reliable
and relatively simple way to obtain empirically the orbital
characters of bands in the iron-based superconductors. With
a proper choice of basis functions, it can be applied to
other materials as well. Nevertheless, the model has its own
limitations. For example, it remains quite difficult to determine
the orbital characters from the Fermi surface patterns in
the case of bands with mixed characters. Some theoretical
assumptions are often necessary to guide the analysis. For
example, we assumed a particular angular distribution for the
orbital characters of the electronlike Fermi surfaces forming
the Fermi surface at the M point of Fe-based superconductors
in order to get a nice agreement between the experimental data
and our simulations. However, the method is a powerful tool
to discard some scenarios.

Another important limitation concerns the determination of
unknown parameters, such as γδ in Eq. (14). As explained in

Sec. V, we imposed the phase γδ by looking at the photon
energy dependence of the Fermi surface pattern. It is clear
though that the phase itself may carry some important infor-
mation that is not accessible directly from our simplify model.
From the experimental point of view, further ARPES studies
on different materials, involving different electronic orbitals
or even different transition metals, may help clarify this issue.

VIII. SUMMARY

We introduced a simple method to obtain the orbital
characters of the various sheets forming the Fermi surface
of crystals. The method exploits the asymmetries obtained
experimentally in the photoemission intensity patterns of
Fermi surface mappings and energy-momentum plots revealed
by ARPES in various experimental conditions of beam orien-
tation and light polarization, including nonpolarized light. Our
method has been successfully applied to Ba0.6K0.4Fe2As2 and
FeTe0.55Se0.45, which are two Fe-based superconductors. We
showed that the multisheet Fermi surface of these materials
originates mainly from Fe 3d electrons with dxy , dxz, and dyz

orbital characters. Our results suggest that there is no direct
relationship between the strength of the superconducting gap
on the various Fermi surface sheets of these multiband systems
and the orbital characters from which they are mainly formed.
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APPENDIX: DETAILS OF THE MATRIX ELEMENT
CALCULATIONS

In the following, we define

〈r | f 〉 = eikf ·r = 4π

∞∑
l=0

iljl(kf r)
l∑

m=−l

Y m∗
l (θk,φk)Ym

l (θ,φ),

(A1)

〈r | nl0m0〉 = Rnl0 (r)Ym0
l0

(θ,φ), (A2)

A · r =
3∑

α=1

Aαrα, (A3)

rα = r

√
4π

3
pα, (A4)
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where α = x,y,z.px,py,pz are the p-orbital angular distribution functions. Within the 3-step model approximation, the
photoemission matrix element between an initial state | nl0m0〉 and a final state | f 〉 becomes

〈f | A · r | nl0m0〉 =
3∑

α=1

Aα

∞∑
l=0

il · 4π

∫ ∞

0
drjl(kf r)Rnl0 (r)r3 ·

l∑
m=−l

Y m∗
l (θk,φk) ·

∮
d�Ym

l pαY
m0
l0

(A5)

=
3∑

α=1

Aα

∞∑
l=0

il · ρ
nl0
l (kf ) ·

l∑
m=−l

Y m∗
l (θk,φk) ·

∮
d�Ym

l pαY
m0
l0

(A6)

=
3∑

α=1

Aα

1∑
m1=−1

αm1

∞∑
l=0

il · ρ
nl0
l (kf ) ·

l∑
m=−l

Y m∗
l (θk,φk) ·

∮
d�Ym

l Y
m1
1 Y

m0
l0

, (A7)

where we defined pα ≡ ∑1
m1=−1 αm1Y

m1
1 .

We then use Wigner’s formalism for the 3j-symbols:
∮

d�Ym
l Y

m1
1 Y

m0
l0

=
√

(2l + 1) · 3 · (2l0 + 1)

4π

(
l 1 l0
0 0 0

) (
l 1 l0
m m1 m0

)
≡ W

(
l 1 l0
m m1 m0

)
, (A8)

which may be nonzero only if l0 �= 0, m = −(m1 + m0), and l = l0 − 1 or l0 + 1.
Hence, ∮

d�Ym
l Y

m1
1 Y

m0
l0

= δ
m,−(m0+m1)
l,l0−1 W

(
l 1 l0
m m1 m0

)
+ δ

m,−(m0+m1)
l,l0+1 W

(
l 1 l0
m m1 m0

)
. (A9)

Substituting the previous result into Eq. (A7), we get

〈f | A · r | nl0m0〉 =
3∑

i=α

Aα

1∑
m1=−1

αm1 (A10)

·
[
il0−1ρ

nl0
l0−1(kf )(−1)m0+m1Y

m0+m1
l0−1 (θk,φk)W

(
l0 − 1 1 l0

−(m0 + m1) m1 m0

)
(A11)

+ il0+1ρ
nl0
l0+1(kf )(−1)m0+m1Y

m0+m1
l0+1 (θk,φk)W

(
l0 + 1 1 l0

−(m0 + m1) m1 m0

) ]
(A12)

≡
3∑

α=1

Aα

1∑
m1=−1

αm1 [gn
−(m1,l0,m0,k) + gn

+(m1,l0,m0,k)] (A13)

≡
3∑

α=1

Aα

1∑
m1=−1

αm1Gn(m1,l0,m0,k) (A14)

≡
3∑

α=1

Aα · Mn(α,l0,m0,k), (A15)

where k = (kf ,θk,φk) and

Mx(l0,m0,k) = Mn(1,l0,m0,k)

=
√

1

2
[Gn(−1,l0,m0,k) − Gn(1,l0,m0,k)],

My(l0,m0,k) = Mn(2,l0,m0,k)

= i

√
1

2
[Gn(−1,l0,m0,k) + Gn(1,l0,m0,k)],

Mz(l0,m0,k) = Mn(3,l0,m0,k) = Gn(0,l0,m0,k). (A16)

We now apply the above results to the case of 3d electrons,
for which l0 = 2. We obtain

M
dz2
α (k) = Mα(2,0,k),

M
dyz

α (k) = i

√
1

2
[Mα(2, − 1,k) + Mα(2,1,k)],

Mdxz

α (k) =
√

1

2
[Mα(2, − 1,k) − Mα(2,1,k)],

M
dxy

α (k) = i

√
1

2
[Mα(2, − 2,k) − Mα(2,2,k)],

M
dx2−y2

α (k) =
√

1

2
[Mα(2, − 2,k) + Mα(2,2,k)]. (A17)
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The even (de) and odd (do) combinations of these matrices
for the dxz and dyz orbitals around the � point are (θFS = φk)

Mde

α (k) = cos φkM
dxz

α (k) + sin φkM
dyz

α (k),
(A18)

Mdo

α (k) = − sin φkM
dxz

α (k) + cos φkM
dyz

α (k).

We can express the previous results by defining

Ym
l (θ,φ) = Cm

l P m
l (θ )eimφ, (A19)

where P m
l (θ ) contains all the θ dependence and Cm

l contains
all the numerical prefactors. For example, we have

Y 1
3 (θ,φ) = −1

8

√
21

π
· sin θ (5 cos2 θ − 1) · eiφ

= C1
3 · P 1

3 (θ ) · eiφ. (A20)

For 3d electrons, this leads to Eqs. (A21)–(A25):

dz2

Mx(dz2 ) = −i
√

2C1
1C

0
2

[
2
5ρ1(kf )P 1

1 + 3
5ρ3(kf )P 1

3

]{− cos φk}
My(dz2 ) = −i

√
2C1

1C
0
2

[
2
5ρ1(kf )P 1

1 + 3
5ρ3(kf )P 1

3

]{− sin φk}
Mz(dz2 ) = iC0

1C
0
2

[ − 4
5ρ1(kf )P 0

1 + 3
5ρ3(kf )P 0

3

]{−1} (A21)

dxz

Mx(dxz) = iC1
1C

1
2

[
2
5ρ1(kf )P 0

1 + 1
5ρ3(kf )P 0

3

− ρ3(kf )P 2
3 · cos 2φk

]{1}
My(dxz) = iC1

1C
1
2

[ − ρ3(kf )P 2
3

]
sin 2φk ∼ {0}

Mz(dxz) = −i
√

2C0
1C

1
2

[ − 1
5ρ1(kf )P 1

1 + 1
5ρ3(kf )P 1

3

]
×{− cos φk} (A22)

dyz

Mx(dyz) = iC1
1C1

2

[ − ρ3(kf )P 2
3

]
sin 2φk ∼ {0}

My(dyz) = iC1
1C1

2

[
2
5ρ1(kf )P 0

1 + 1
5ρ3(kf )P 0

3

+ ρ3(kf )P 2
3 · cos 2φk

]{1}
Mz(dyz) = −i

√
2C0

1C
1
2

[ − 1
5ρ1(kf )P 1

1

+ 1
5ρ3(kf )P 1

3

]{− sin φk} (A23)

dxy

Mx(dxy) = −iC1
1C

2
2

[
4
5ρ1(kf )P 1

1 + 1
5ρ3(kf )P 1

3

− ρ3(kf )P 3
3 (4 cos2 φk − 1)

]{sin φk}
My(dxy) = −iC1

1C
2
2

[
4
5ρ1(kf )P 1

1 + 1
5ρ3(kf )P 1

3

+ ρ3(kf )P 3
3 (4 cos2 φk − 3)

]{cos φk}
Mz(dxy) = i

√
2C0

1C
2
2

[
ρ3(kf )P 2

3

]{− sin 2φk} (A24)

dx2−y2

Mx(dx2−y2 ) = −iC1
1C2

2

[
4
5ρ1(kf )P 1

1 + 1
5ρ3(kf )P 1

3

− ρ3(kf )P 3
3 (4cos2φk − 3)

]{cos φk}
My(dx2−y2 ) = −iC1

1C2
2

[
4
5ρ1(kf )P 1

1 + 1
5ρ3(kf )P 1

3

+ ρ3(kf )P 3
3 (4cos2φk − 1)

]{− sin φk}
Mz(dx2−y2 ) = i

√
2C0

1C
2
2

[
ρ3(kf )P 2

3

]{− cos 2φk}
(A25)

The main idea behind our simplified approach is to
neglect the φk dependence of the prefactors preceding the
curly brackets in the above equations. We note that Mx(dyz)
and My(dxz) are set to zero since the terms preceding the
sin 2φk function are vanishingly small compared to the other
matrix components. The curly bracket terms correspond to the
components of the simplified matrices given in Sec. IV.
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